Properties

Label 89298.ci
Number of curves $4$
Conductor $89298$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ci1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 89298.ci have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 89298.ci do not have complex multiplication.

Modular form 89298.2.a.ci

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} - 4 q^{7} + q^{8} + 2 q^{10} - 2 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 89298.ci

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89298.ci1 89298cs4 \([1, -1, 1, -478094, -127112389]\) \(9357915116017/538002\) \(694812350257938\) \([2]\) \(983040\) \(1.9114\)  
89298.ci2 89298cs2 \([1, -1, 1, -31604, -1737997]\) \(2703045457/544644\) \(703390280508036\) \([2, 2]\) \(491520\) \(1.5648\)  
89298.ci3 89298cs1 \([1, -1, 1, -9824, 352883]\) \(81182737/5904\) \(7624826888976\) \([2]\) \(245760\) \(1.2182\) \(\Gamma_0(N)\)-optimal
89298.ci4 89298cs3 \([1, -1, 1, 66406, -10441285]\) \(25076571983/50863698\) \(-65688836751889362\) \([2]\) \(983040\) \(1.9114\)