Properties

Label 89232bo
Number of curves $2$
Conductor $89232$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 89232bo have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 89232bo do not have complex multiplication.

Modular form 89232.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + 4 q^{7} + q^{9} + q^{11} + 2 q^{15} - 8 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 89232bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89232.h2 89232bo1 \([0, -1, 0, -897784, 840056944]\) \(-4047806261953/13066420224\) \(-258331093954499444736\) \([2]\) \(4064256\) \(2.6031\) \(\Gamma_0(N)\)-optimal
89232.h1 89232bo2 \([0, -1, 0, -19933944, 34221867120]\) \(44308125149913793/61165323648\) \(1209275738816836534272\) \([2]\) \(8128512\) \(2.9497\)