Show commands: SageMath
Rank
The elliptic curves in class 89232.bn have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 89232.bn do not have complex multiplication.Modular form 89232.2.a.bn
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 89232.bn
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 89232.bn1 | 89232cq4 | \([0, 1, 0, -13505184, 19098363636]\) | \(13778603383488553/13703976\) | \(270935960340824064\) | \([4]\) | \(3096576\) | \(2.6377\) | |
| 89232.bn2 | 89232cq3 | \([0, 1, 0, -2040224, -710231820]\) | \(47504791830313/16490207448\) | \(326021454732793577472\) | \([2]\) | \(3096576\) | \(2.6377\) | |
| 89232.bn3 | 89232cq2 | \([0, 1, 0, -850464, 293449716]\) | \(3440899317673/106007616\) | \(2095835197347201024\) | \([2, 2]\) | \(1548288\) | \(2.2912\) | |
| 89232.bn4 | 89232cq1 | \([0, 1, 0, 14816, 15521780]\) | \(18191447/5271552\) | \(-104221796915478528\) | \([2]\) | \(774144\) | \(1.9446\) | \(\Gamma_0(N)\)-optimal |