Properties

Label 89232.bh
Number of curves $4$
Conductor $89232$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 89232.bh have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 89232.bh do not have complex multiplication.

Modular form 89232.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} - 2 q^{7} + q^{9} + q^{11} - 4 q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 89232.bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89232.bh1 89232br3 \([0, -1, 0, -27215816, 54657812208]\) \(112763292123580561/1932612\) \(38208917483962368\) \([2]\) \(5184000\) \(2.7235\)  
89232.bh2 89232br4 \([0, -1, 0, -27188776, 54771812848]\) \(-112427521449300721/466873642818\) \(-9230376554564434993152\) \([2]\) \(10368000\) \(3.0700\)  
89232.bh3 89232br1 \([0, -1, 0, -121736, -11876112]\) \(10091699281/2737152\) \(54115163783036928\) \([2]\) \(1036800\) \(1.9188\) \(\Gamma_0(N)\)-optimal
89232.bh4 89232br2 \([0, -1, 0, 310904, -77637392]\) \(168105213359/228637728\) \(-4520307274751803392\) \([2]\) \(2073600\) \(2.2653\)