Properties

Label 88200.dq
Number of curves $4$
Conductor $88200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 88200.dq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 88200.dq do not have complex multiplication.

Modular form 88200.2.a.dq

Copy content sage:E.q_eigenform(10)
 
\(q - 6 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 88200.dq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
88200.dq1 88200cb4 \([0, 0, 0, -2385075, -1416847250]\) \(546718898/405\) \(1111528928160000000\) \([2]\) \(1769472\) \(2.3964\)  
88200.dq2 88200cb3 \([0, 0, 0, -1503075, 700834750]\) \(136835858/1875\) \(5145967260000000000\) \([2]\) \(1769472\) \(2.3964\)  
88200.dq3 88200cb2 \([0, 0, 0, -180075, -12262250]\) \(470596/225\) \(308758035600000000\) \([2, 2]\) \(884736\) \(2.0498\)  
88200.dq4 88200cb1 \([0, 0, 0, 40425, -1457750]\) \(21296/15\) \(-5145967260000000\) \([2]\) \(442368\) \(1.7032\) \(\Gamma_0(N)\)-optimal