Properties

Label 87360.dr
Number of curves $4$
Conductor $87360$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87360.dr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87360.dr do not have complex multiplication.

Modular form 87360.2.a.dr

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{7} + q^{9} + 4 q^{11} + q^{13} - q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 87360.dr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87360.dr1 87360fq4 \([0, -1, 0, -99905, 12187617]\) \(841356017734178/1404585\) \(184101765120\) \([4]\) \(327680\) \(1.4237\)  
87360.dr2 87360fq3 \([0, -1, 0, -16385, -551775]\) \(3711757787138/1124589375\) \(147402178560000\) \([2]\) \(327680\) \(1.4237\)  
87360.dr3 87360fq2 \([0, -1, 0, -6305, 188097]\) \(423026849956/16769025\) \(1098974822400\) \([2, 2]\) \(163840\) \(1.0772\)  
87360.dr4 87360fq1 \([0, -1, 0, 175, 10545]\) \(35969456/2985255\) \(-48910417920\) \([2]\) \(81920\) \(0.73060\) \(\Gamma_0(N)\)-optimal