Properties

Label 87120.dj
Number of curves $4$
Conductor $87120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87120.dj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87120.dj do not have complex multiplication.

Modular form 87120.2.a.dj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} + 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 87120.dj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87120.dj1 87120gl4 \([0, 0, 0, -1694847, 461332586]\) \(1628514404944/664335375\) \(219639771516442464000\) \([2]\) \(3317760\) \(2.6009\)  
87120.dj2 87120gl2 \([0, 0, 0, -780087, -265169806]\) \(158792223184/16335\) \(5400609094045440\) \([2]\) \(1105920\) \(2.0516\)  
87120.dj3 87120gl1 \([0, 0, 0, -45012, -4806241]\) \(-488095744/200475\) \(-4142512657364400\) \([2]\) \(552960\) \(1.7050\) \(\Gamma_0(N)\)-optimal
87120.dj4 87120gl3 \([0, 0, 0, 347028, 52549211]\) \(223673040896/187171875\) \(-3867623700162750000\) \([2]\) \(1658880\) \(2.2543\)