Show commands: SageMath
Rank
The elliptic curves in class 8712.f have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 8712.f do not have complex multiplication.Modular form 8712.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 8712.f
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8712.f1 | 8712k3 | \([0, 0, 0, -514371, 141972446]\) | \(5690357426/891\) | \(2356629422856192\) | \([2]\) | \(61440\) | \(1.9607\) | |
8712.f2 | 8712k2 | \([0, 0, 0, -35211, 1770230]\) | \(3650692/1089\) | \(1440162425078784\) | \([2, 2]\) | \(30720\) | \(1.6141\) | |
8712.f3 | 8712k1 | \([0, 0, 0, -13431, -577654]\) | \(810448/33\) | \(10910321402112\) | \([2]\) | \(15360\) | \(1.2675\) | \(\Gamma_0(N)\)-optimal |
8712.f4 | 8712k4 | \([0, 0, 0, 95469, 11832590]\) | \(36382894/43923\) | \(-116173102289688576\) | \([2]\) | \(61440\) | \(1.9607\) |