Properties

Label 8712.f
Number of curves $4$
Conductor $8712$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8712.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8712.f do not have complex multiplication.

Modular form 8712.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8712.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8712.f1 8712k3 \([0, 0, 0, -514371, 141972446]\) \(5690357426/891\) \(2356629422856192\) \([2]\) \(61440\) \(1.9607\)  
8712.f2 8712k2 \([0, 0, 0, -35211, 1770230]\) \(3650692/1089\) \(1440162425078784\) \([2, 2]\) \(30720\) \(1.6141\)  
8712.f3 8712k1 \([0, 0, 0, -13431, -577654]\) \(810448/33\) \(10910321402112\) \([2]\) \(15360\) \(1.2675\) \(\Gamma_0(N)\)-optimal
8712.f4 8712k4 \([0, 0, 0, 95469, 11832590]\) \(36382894/43923\) \(-116173102289688576\) \([2]\) \(61440\) \(1.9607\)