Properties

Label 8624u
Number of curves $2$
Conductor $8624$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8624u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8624u do not have complex multiplication.

Modular form 8624.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 2 q^{5} + q^{9} - q^{11} + 4 q^{13} - 4 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 8624u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8624.z2 8624u1 \([0, -1, 0, -11384, -479632]\) \(-338608873/13552\) \(-6530577399808\) \([2]\) \(18432\) \(1.2272\) \(\Gamma_0(N)\)-optimal
8624.z1 8624u2 \([0, -1, 0, -183864, -30284176]\) \(1426487591593/2156\) \(1038955495424\) \([2]\) \(36864\) \(1.5738\)