Properties

Label 85063b
Number of curves $1$
Conductor $85063$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 85063b1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(19\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 85063b do not have complex multiplication.

Modular form 85063.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{3} - 2 q^{4} - 2 q^{5} + q^{7} + 6 q^{9} - 6 q^{12} - 6 q^{13} - 6 q^{15} + 4 q^{16} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 85063b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
85063.c1 85063b1 \([0, 0, 1, -89056, -1407200]\) \(44091731607552/25033168477\) \(44347784980282597\) \([]\) \(972000\) \(1.8841\) \(\Gamma_0(N)\)-optimal