Properties

Label 84966.dt
Number of curves $1$
Conductor $84966$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 84966.dt1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 84966.dt do not have complex multiplication.

Modular form 84966.2.a.dt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} - 5 q^{11} + q^{12} + 2 q^{13} - q^{15} + q^{16} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 84966.dt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
84966.dt1 84966ec1 \([1, 0, 0, -85261, -425511703]\) \(-83521/95256\) \(-78175731148856964504\) \([]\) \(3525120\) \(2.4961\) \(\Gamma_0(N)\)-optimal