Show commands: SageMath
Rank
The elliptic curves in class 84878c have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 84878c do not have complex multiplication.Modular form 84878.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 84878c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 84878.d4 | 84878c1 | \([1, -1, 0, -941, 55637]\) | \(-35937/496\) | \(-1272600298864\) | \([2]\) | \(96768\) | \(1.0042\) | \(\Gamma_0(N)\)-optimal |
| 84878.d3 | 84878c2 | \([1, -1, 0, -28321, 1835337]\) | \(979146657/3844\) | \(9862652316196\) | \([2, 2]\) | \(193536\) | \(1.3508\) | |
| 84878.d2 | 84878c3 | \([1, -1, 0, -42011, -111381]\) | \(3196010817/1847042\) | \(4739004437932178\) | \([2]\) | \(387072\) | \(1.6974\) | |
| 84878.d1 | 84878c4 | \([1, -1, 0, -452711, 117354295]\) | \(3999236143617/62\) | \(159075037358\) | \([2]\) | \(387072\) | \(1.6974\) |