Properties

Label 84700.bh
Number of curves $2$
Conductor $84700$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 84700.bh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 84700.bh do not have complex multiplication.

Modular form 84700.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{7} + q^{9} + 5 q^{13} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 84700.bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
84700.bh1 84700u2 \([0, -1, 0, -1216453, 505405617]\) \(17557957181440/443889677\) \(5032816896485100800\) \([]\) \(1399680\) \(2.3713\)  
84700.bh2 84700u1 \([0, -1, 0, -151653, -22415743]\) \(34020720640/456533\) \(5176166771283200\) \([]\) \(466560\) \(1.8220\) \(\Gamma_0(N)\)-optimal