Properties

Label 8450.t
Number of curves $1$
Conductor $8450$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8450.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8450.t do not have complex multiplication.

Modular form 8450.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} - 2 q^{9} - q^{11} + q^{12} - 4 q^{14} + q^{16} + 7 q^{17} - 2 q^{18} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8450.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8450.t1 8450p1 \([1, 0, 0, 50612, 48389392]\) \(304175/21632\) \(-1019663401250000000\) \([]\) \(141120\) \(2.1351\) \(\Gamma_0(N)\)-optimal