sage:E = EllipticCurve("t1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 8450.t1 has
rank \(0\).
|
Bad L-factors: |
Prime |
L-Factor |
\(2\) | \(1 - T\) |
\(5\) | \(1\) |
\(13\) | \(1\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(3\) |
\( 1 - T + 3 T^{2}\) |
1.3.ab
|
\(7\) |
\( 1 + 4 T + 7 T^{2}\) |
1.7.e
|
\(11\) |
\( 1 + T + 11 T^{2}\) |
1.11.b
|
\(17\) |
\( 1 - 7 T + 17 T^{2}\) |
1.17.ah
|
\(19\) |
\( 1 - 3 T + 19 T^{2}\) |
1.19.ad
|
\(23\) |
\( 1 + 23 T^{2}\) |
1.23.a
|
\(29\) |
\( 1 + 4 T + 29 T^{2}\) |
1.29.e
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 8450.t do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 8450.t
sage:E.isogeny_class().curves