Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-3704005x+4472395997\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-3704005xz^2+4472395997z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-59264075x+286174079750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 8450 \) | = | $2 \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-5385097337851562500000$ | = | $-1 \cdot 2^{5} \cdot 5^{13} \cdot 13^{10} $ |
|
j-invariant: | $j$ | = | \( -\frac{2609064081}{2500000} \) | = | $-1 \cdot 2^{-5} \cdot 3^{3} \cdot 5^{-7} \cdot 13^{2} \cdot 83^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8660241121043217046295392075$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.076152641997342429382079993749$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0512799886874482$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.410707085257686$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.12376435690500901101388000222$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 20 $ = $ 5\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.4752871381001802202776000445 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.475287138 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.123764 \cdot 1.000000 \cdot 20}{1^2} \\ & \approx 2.475287138\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 524160 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$5$ | $4$ | $I_{7}^{*}$ | additive | 1 | 2 | 13 | 7 |
$13$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 2731 & 1834 \\ 0 & 3251 \end{array}\right),\left(\begin{array}{rr} 2231 & 3630 \\ 3262 & 3531 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 3627 & 14 \\ 3626 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 7 \\ 903 & 3634 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2904 & 3633 \\ 2919 & 6 \end{array}\right),\left(\begin{array}{rr} 8 & 7 \\ 1813 & 3634 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$405775319040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 4225 = 5^{2} \cdot 13^{2} \) |
$5$ | additive | $18$ | \( 169 = 13^{2} \) |
$13$ | additive | $50$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 8450.q
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 1690.h2, its twist by $65$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.6760.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.6.46411625.1 | \(\Z/7\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$18$ | 18.6.26207177223214467584000000000.2 | \(\Z/14\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ss | add | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 14 | 0,0 | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0 | 0,0 | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.