Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1690.c2 1690.c \( 2 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.841242319$ $[1, -1, 0, -148160, 35808800]$ \(y^2+xy=x^3-x^2-148160x+35808800\) 7.8.0.a.1, 40.2.0.a.1, 91.48.0.?, 280.16.0.?, 3640.96.2.? $[(-1133/2, 60457/2)]$
1690.h2 1690.h \( 2 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.037085293$ $[1, -1, 1, -877, 16501]$ \(y^2+xy+y=x^3-x^2-877x+16501\) 7.16.0-7.a.1.2, 40.2.0.a.1, 91.48.0.?, 280.32.0.?, 3640.96.2.? $[(-29, 144)]$
8450.g2 8450.g \( 2 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.721610512$ $[1, -1, 0, -21917, 2040741]$ \(y^2+xy=x^3-x^2-21917x+2040741\) 7.8.0.a.1, 35.16.0-7.a.1.1, 40.2.0.a.1, 56.16.0-7.a.1.6, 91.24.0.?, $\ldots$ $[(149, 1363)]$
8450.q2 8450.q \( 2 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -3704005, 4472395997]$ \(y^2+xy+y=x^3-x^2-3704005x+4472395997\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 455.48.0.?, $\ldots$ $[ ]$
13520.m2 13520.m \( 2^{4} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2370563, -2289392638]$ \(y^2=x^3-2370563x-2289392638\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 364.48.0.?, $\ldots$ $[ ]$
13520.p2 13520.p \( 2^{4} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.616550203$ $[0, 0, 0, -14027, -1042054]$ \(y^2=x^3-14027x-1042054\) 7.8.0.a.1, 28.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 280.32.0.?, $\ldots$ $[(247, 3250)]$
15210.d2 15210.d \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -7890, -437644]$ \(y^2+xy=x^3-x^2-7890x-437644\) 7.8.0.a.1, 21.16.0-7.a.1.2, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$ $[ ]$
15210.bs2 15210.bs \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -1333442, -965504159]$ \(y^2+xy+y=x^3-x^2-1333442x-965504159\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, 280.16.0.?, $\ldots$ $[ ]$
54080.bi2 54080.bi \( 2^{6} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.930949934$ $[0, 0, 0, -56108, 8336432]$ \(y^2=x^3-56108x+8336432\) 7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.1, 91.24.0.?, 140.16.0.?, $\ldots$ $[(88, 2020)]$
54080.br2 54080.br \( 2^{6} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -56108, -8336432]$ \(y^2=x^3-56108x-8336432\) 7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.2, 70.16.0-7.a.1.2, 91.24.0.?, $\ldots$ $[ ]$
54080.bu2 54080.bu \( 2^{6} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.717769735$ $[0, 0, 0, -9482252, -18315141104]$ \(y^2=x^3-9482252x-18315141104\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ $[(22317, 3299245)]$
54080.cb2 54080.cb \( 2^{6} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -9482252, 18315141104]$ \(y^2=x^3-9482252x+18315141104\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ $[ ]$
67600.bt2 67600.bt \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -350675, -130256750]$ \(y^2=x^3-350675x-130256750\) 7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.5, 91.24.0.?, 140.16.0.?, $\ldots$ $[ ]$
67600.bx2 67600.bx \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -59264075, -286174079750]$ \(y^2=x^3-59264075x-286174079750\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ $[ ]$
76050.p2 76050.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -33336042, -120721355884]$ \(y^2+xy=x^3-x^2-33336042x-120721355884\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1365.48.0.?, $\ldots$ $[ ]$
76050.fu2 76050.fu \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.878995424$ $[1, -1, 1, -197255, -54902753]$ \(y^2+xy+y=x^3-x^2-197255x-54902753\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 105.16.0.?, 168.16.0.?, $\ldots$ $[(7489, 643130)]$
82810.z2 82810.z \( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $16.56367754$ $[1, -1, 0, -7259849, -12267898707]$ \(y^2+xy=x^3-x^2-7259849x-12267898707\) 7.8.0.a.1, 40.2.0.a.1, 91.48.0.?, 280.16.0.?, 3640.96.2.? $[(14997029/19, 57807231180/19)]$
82810.cb2 82810.cb \( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $9.518800222$ $[1, -1, 1, -42958, -5574019]$ \(y^2+xy+y=x^3-x^2-42958x-5574019\) 7.16.0-7.a.1.1, 40.2.0.a.1, 91.48.0.?, 280.32.0.?, 3640.96.2.? $[(17147/7, 1554253/7)]$
121680.cj2 121680.cj \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.014751149$ $[0, 0, 0, -126243, 28135458]$ \(y^2=x^3-126243x+28135458\) 7.8.0.a.1, 40.2.0.a.1, 84.16.0.?, 91.24.0.?, 280.16.0.?, $\ldots$ $[(273, 3744)]$
121680.dm2 121680.dm \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -21335067, 61813601226]$ \(y^2=x^3-21335067x+61813601226\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1092.48.0.?, $\ldots$ $[ ]$
204490.z2 204490.z \( 2 \cdot 5 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.605968082$ $[1, -1, 0, -106079, -21644947]$ \(y^2+xy=x^3-x^2-106079x-21644947\) 7.8.0.a.1, 40.2.0.a.1, 77.16.0.?, 91.24.0.?, 280.16.0.?, $\ldots$ $[(529, 8106)]$
204490.cm2 204490.cm \( 2 \cdot 5 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $52.84620029$ $[1, -1, 1, -17927383, -47607730673]$ \(y^2+xy+y=x^3-x^2-17927383x-47607730673\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1001.48.0.?, $\ldots$ $[(176541579642750860107855/3249834893, 71077669532780711957261246087346762/3249834893)]$
270400.ep2 270400.ep \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1402700, -1042054000]$ \(y^2=x^3-1402700x-1042054000\) 7.8.0.a.1, 14.16.0-7.a.1.2, 40.2.0.a.1, 91.24.0.?, 182.48.0.?, $\ldots$ $[ ]$
270400.eq2 270400.eq \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $38.92620787$ $[0, 0, 0, -237056300, 2289392638000]$ \(y^2=x^3-237056300x+2289392638000\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 364.48.0.?, $\ldots$ $[(786409376475625080/1774763, 696109758427445579317747100/1774763)]$
270400.fx2 270400.fx \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -237056300, -2289392638000]$ \(y^2=x^3-237056300x-2289392638000\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 182.48.0.?, 280.16.0.?, $\ldots$ $[ ]$
270400.fy2 270400.fy \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.242703480$ $[0, 0, 0, -1402700, 1042054000]$ \(y^2=x^3-1402700x+1042054000\) 7.8.0.a.1, 28.16.0-7.a.1.3, 40.2.0.a.1, 91.24.0.?, 280.32.0.?, $\ldots$ $[(30030, 5200000)]$
414050.bl2 414050.bl \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1073942, -697826284]$ \(y^2+xy=x^3-x^2-1073942x-697826284\) 7.8.0.a.1, 35.16.0-7.a.1.2, 40.2.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, $\ldots$ $[ ]$
414050.ge2 414050.ge \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $65.10217555$ $[1, -1, 1, -181496230, -1533668834603]$ \(y^2+xy+y=x^3-x^2-181496230x-1533668834603\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 455.48.0.?, $\ldots$ $[(112865582869292313249824362291/2405957542163, 21167076605675255332775441103976680984033185/2405957542163)]$
486720.be2 486720.be \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.458028147$ $[0, 0, 0, -85340268, 494508809808]$ \(y^2=x^3-85340268x+494508809808\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 2184.48.0.?, $\ldots$ $[(-134, 711296)]$
486720.hi2 486720.hi \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -85340268, -494508809808]$ \(y^2=x^3-85340268x-494508809808\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 2184.48.0.?, $\ldots$ $[ ]$
486720.js2 486720.js \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.059758146$ $[0, 0, 0, -504972, -225083664]$ \(y^2=x^3-504972x-225083664\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 168.16.0.?, 280.16.0.?, $\ldots$ $[(1182, 28800)]$
486720.ps2 486720.ps \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -504972, 225083664]$ \(y^2=x^3-504972x+225083664\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 168.16.0.?, 210.16.0.?, $\ldots$ $[ ]$
488410.u2 488410.u \( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -42818294, 175757361300]$ \(y^2+xy=x^3-x^2-42818294x+175757361300\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1547.48.0.?, $\ldots$ $[ ]$
488410.cj2 488410.cj \( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -253363, 80057267]$ \(y^2+xy+y=x^3-x^2-253363x+80057267\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 119.16.0.?, 280.16.0.?, $\ldots$ $[ ]$
  displayed columns for results