Properties

Label 8450.l
Number of curves $1$
Conductor $8450$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8450.l1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8450.l do not have complex multiplication.

Modular form 8450.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 3 q^{3} + q^{4} - 3 q^{6} - q^{8} + 6 q^{9} + 3 q^{11} + 3 q^{12} + q^{16} - 7 q^{17} - 6 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8450.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8450.l1 8450l1 \([1, -1, 0, -93742, 11137166]\) \(-48317985/338\) \(-637289625781250\) \([]\) \(100800\) \(1.6741\) \(\Gamma_0(N)\)-optimal