Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-21917x+2040741\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-21917xz^2+2040741z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-350675x+130256750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(149, 1363)$ | $3.7216105128837941198929403495$ | $\infty$ |
Integral points
\( \left(149, 1363\right) \), \( \left(149, -1512\right) \)
Invariants
Conductor: | $N$ | = | \( 8450 \) | = | $2 \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-1115664062500000$ | = | $-1 \cdot 2^{5} \cdot 5^{13} \cdot 13^{4} $ |
|
j-invariant: | $j$ | = | \( -\frac{2609064081}{2500000} \) | = | $-1 \cdot 2^{-5} \cdot 3^{3} \cdot 5^{-7} \cdot 13^{2} \cdot 83^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5835494333735533366027954867$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.076152641997342429382079993768$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0512799886874482$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.708668887987003$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.7216105128837941198929403495$ |
|
Real period: | $\Omega$ | ≈ | $0.44623873489583563002129422740$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.3214535340886125513615911197 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.321453534 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.446239 \cdot 3.721611 \cdot 2}{1^2} \\ & \approx 3.321453534\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 40320 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$5$ | $2$ | $I_{7}^{*}$ | additive | 1 | 2 | 13 | 7 |
$13$ | $1$ | $IV$ | additive | 1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 1409 & 10 \\ 378 & 109 \end{array}\right),\left(\begin{array}{rr} 2731 & 1834 \\ 0 & 3251 \end{array}\right),\left(\begin{array}{rr} 2183 & 3626 \\ 721 & 3541 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 3627 & 14 \\ 3626 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 1821 & 14 \\ 1827 & 99 \end{array}\right),\left(\begin{array}{rr} 911 & 14 \\ 2737 & 99 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$405775319040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 4225 = 5^{2} \cdot 13^{2} \) |
$5$ | additive | $18$ | \( 169 = 13^{2} \) |
$13$ | additive | $62$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 8450.g
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 1690.h2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.6760.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.6.3570125.1 | \(\Z/7\Z\) | not in database |
$8$ | 8.2.15615726750000.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$18$ | 18.6.11928619582710272000000000.1 | \(\Z/14\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ss | add | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 14 | 1,1 | - | 1 | 1 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 3 |
$\mu$-invariant(s) | 0 | 0,0 | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.