Properties

Label 8330u
Number of curves $1$
Conductor $8330$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8330u1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8330u do not have complex multiplication.

Modular form 8330.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{8} - 3 q^{9} + q^{10} - q^{11} + q^{13} + q^{16} - q^{17} - 3 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8330u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8330.u1 8330u1 \([1, -1, 1, 19958, 52259]\) \(3112538751/1806250\) \(-510220918506250\) \([]\) \(30240\) \(1.5116\) \(\Gamma_0(N)\)-optimal