Properties

Label 8330e
Number of curves $2$
Conductor $8330$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8330e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8330e do not have complex multiplication.

Modular form 8330.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} - 2 q^{9} + q^{10} - q^{12} - 5 q^{13} + q^{15} + q^{16} + q^{17} + 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 8330e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8330.d1 8330e1 \([1, 1, 0, -123, -2267]\) \(-1771561/17000\) \(-2000033000\) \([]\) \(4320\) \(0.46705\) \(\Gamma_0(N)\)-optimal
8330.d2 8330e2 \([1, 1, 0, 1102, 57268]\) \(1256216039/12577280\) \(-1479704414720\) \([]\) \(12960\) \(1.0164\)