Properties

Label 8256.bl
Number of curves $2$
Conductor $8256$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8256.bl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8256.bl do not have complex multiplication.

Modular form 8256.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - q^{7} + q^{9} + 5 q^{11} + 7 q^{13} + q^{15} + 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8256.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8256.bl1 8256bp2 \([0, 1, 0, -3833665, 2888210111]\) \(-23769846831649063249/3261823333284\) \(-855067415880400896\) \([]\) \(225792\) \(2.4586\)  
8256.bl2 8256bp1 \([0, 1, 0, 10175, -879169]\) \(444369620591/1540767744\) \(-403903019483136\) \([]\) \(32256\) \(1.4857\) \(\Gamma_0(N)\)-optimal