Properties

Label 8190.bt
Number of curves $4$
Conductor $8190$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8190.bt have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8190.bt do not have complex multiplication.

Modular form 8190.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} - 4 q^{11} - q^{13} + q^{14} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8190.bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8190.bt1 8190bs3 \([1, -1, 1, -806432, 278941731]\) \(79560762543506753209/479824800\) \(349792279200\) \([2]\) \(81920\) \(1.8231\)  
8190.bt2 8190bs2 \([1, -1, 1, -50432, 4362531]\) \(19458380202497209/47698560000\) \(34772250240000\) \([2, 2]\) \(40960\) \(1.4765\)  
8190.bt3 8190bs4 \([1, -1, 1, -31712, 7627299]\) \(-4837870546133689/31603162500000\) \(-23038705462500000\) \([2]\) \(81920\) \(1.8231\)  
8190.bt4 8190bs1 \([1, -1, 1, -4352, 12579]\) \(12501706118329/7156531200\) \(5217111244800\) \([2]\) \(20480\) \(1.1300\) \(\Gamma_0(N)\)-optimal