Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-1581389x+769297439\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-1581389xz^2+769297439z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-128092536x+561202110612\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(512170/441, 207192817/9261)$ | $10.401958174797149353027740725$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 81796 \) | = | $2^{2} \cdot 11^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-2913628962930692864$ | = | $-1 \cdot 2^{8} \cdot 11^{9} \cdot 13^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{199794688}{1331} \) | = | $-1 \cdot 2^{13} \cdot 11^{-3} \cdot 29^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3784346336718406779518587813$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.56508580183140983505067814277$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9950617979294879$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.813169271351526$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.401958174797149353027740725$ |
|
| Real period: | $\Omega$ | ≈ | $0.25539414021372108240428566865$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $10.626396658365621574839322979 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.626396658 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.255394 \cdot 10.401958 \cdot 4}{1^2} \\ & \approx 10.626396658\end{aligned}$$
Modular invariants
Modular form 81796.2.a.o
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1555200 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $11$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 858 = 2 \cdot 3 \cdot 11 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 853 & 6 \\ 852 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 14 & 585 \\ 637 & 469 \end{array}\right),\left(\begin{array}{rr} 779 & 390 \\ 819 & 311 \end{array}\right),\left(\begin{array}{rr} 791 & 0 \\ 0 & 857 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[858])$ is a degree-$6227020800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/858\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 20449 = 11^{2} \cdot 13^{2} \) |
| $11$ | additive | $72$ | \( 676 = 2^{2} \cdot 13^{2} \) |
| $13$ | additive | $86$ | \( 484 = 2^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 81796f
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 44a2, its twist by $-143$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{429}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.34107950448.8 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.1263257424.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.1383611852047087813540982263680875013328896.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.39679562048163658715966080315392.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | ord | add | add | ord | ord | ord | ss | ord | ord | ss | ord | ss |
| $\lambda$-invariant(s) | - | 3 | 1 | 1 | - | - | 1 | 1 | 1 | 1,1 | 1 | 3 | 1,1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | - | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.