Properties

Label 80586x
Number of curves $1$
Conductor $80586$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 80586x1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80586x do not have complex multiplication.

Modular form 80586.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + 2 q^{7} + q^{8} - q^{10} - 6 q^{13} + 2 q^{14} + q^{16} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 80586x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80586.w1 80586x1 \([1, -1, 1, -571748, 188336063]\) \(-12024728171/1942056\) \(-3338285250063675384\) \([]\) \(1824768\) \(2.2821\) \(\Gamma_0(N)\)-optimal