Properties

Label 80586p
Number of curves $4$
Conductor $80586$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 80586p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80586p do not have complex multiplication.

Modular form 80586.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} + 4 q^{7} - q^{8} - 2 q^{10} - 6 q^{13} - 4 q^{14} + q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 80586p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80586.q4 80586p1 \([1, -1, 0, -24814521, 41038003309]\) \(1308451928740468777/194033737531392\) \(250588356927145899982848\) \([2]\) \(14745600\) \(3.2144\) \(\Gamma_0(N)\)-optimal
80586.q2 80586p2 \([1, -1, 0, -381658041, 2869879323757]\) \(4760617885089919932457/133756441657344\) \(172742160047877049614336\) \([2, 2]\) \(29491200\) \(3.5610\)  
80586.q3 80586p3 \([1, -1, 0, -366324921, 3111023301997]\) \(-4209586785160189454377/801182513521564416\) \(-1034701553536009834034191104\) \([2]\) \(58982400\) \(3.9076\)  
80586.q1 80586p4 \([1, -1, 0, -6106487481, 183670297731949]\) \(19499096390516434897995817/15393430272\) \(19880122129322957568\) \([2]\) \(58982400\) \(3.9076\)