Properties

Label 8040.c
Number of curves $4$
Conductor $8040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8040.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8040.c do not have complex multiplication.

Modular form 8040.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 4 q^{7} + q^{9} - 4 q^{11} + 2 q^{13} - q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8040.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8040.c1 8040i3 \([0, -1, 0, -214400, -38139348]\) \(532194189377299202/5025\) \(10291200\) \([2]\) \(24576\) \(1.3803\)  
8040.c2 8040i2 \([0, -1, 0, -13400, -592548]\) \(259878624962404/25250625\) \(25856640000\) \([2, 2]\) \(12288\) \(1.0338\)  
8040.c3 8040i4 \([0, -1, 0, -12400, -685748]\) \(-102965999263202/40806020025\) \(-83570729011200\) \([2]\) \(24576\) \(1.3803\)  
8040.c4 8040i1 \([0, -1, 0, -900, -7548]\) \(315278049616/78515625\) \(20100000000\) \([4]\) \(6144\) \(0.68718\) \(\Gamma_0(N)\)-optimal