Properties

Label 80325k
Number of curves $3$
Conductor $80325$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 80325k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80325k do not have complex multiplication.

Modular form 80325.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} - q^{7} + 4 q^{13} + 4 q^{16} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 80325k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80325.bu3 80325k1 \([0, 0, 1, -4428000, 3586406656]\) \(22759502184972288000/5831\) \(2459953125\) \([]\) \(715392\) \(2.0844\) \(\Gamma_0(N)\)-optimal
80325.bu2 80325k2 \([0, 0, 1, -4434750, 3574924031]\) \(31363160518656000/198257271191\) \(60973404200819578125\) \([]\) \(2146176\) \(2.6337\)  
80325.bu1 80325k3 \([0, 0, 1, -27587250, -53383698844]\) \(838870874148864000/40675641638471\) \(112586998270784722453125\) \([]\) \(6438528\) \(3.1830\)