Properties

Label 80080ba
Number of curves $2$
Conductor $80080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 80080ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80080ba do not have complex multiplication.

Modular form 80080.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 3 q^{9} - q^{11} + q^{13} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 80080ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80080.s2 80080ba1 \([0, 0, 0, -35083, -68122182]\) \(-1165880220753249/488766923344700\) \(-2001989318019891200\) \([2]\) \(829440\) \(2.1909\) \(\Gamma_0(N)\)-optimal
80080.s1 80080ba2 \([0, 0, 0, -2724203, -1713325798]\) \(545861123494712462529/6289889684828750\) \(25763388149058560000\) \([2]\) \(1658880\) \(2.5374\)