Properties

Label 80080.u
Number of curves $4$
Conductor $80080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 80080.u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80080.u do not have complex multiplication.

Modular form 80080.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 3 q^{9} + q^{11} - q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 80080.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80080.u1 80080d4 \([0, 0, 0, -372683, -87473318]\) \(2795197557762143298/3585735728575\) \(7343586772121600\) \([2]\) \(589824\) \(1.9521\)  
80080.u2 80080d2 \([0, 0, 0, -29683, -557118]\) \(2824536112738596/1503627750625\) \(1539714816640000\) \([2, 2]\) \(294912\) \(1.6056\)  
80080.u3 80080d1 \([0, 0, 0, -17183, 860382]\) \(2191698029154384/19159765625\) \(4904900000000\) \([2]\) \(147456\) \(1.2590\) \(\Gamma_0(N)\)-optimal
80080.u4 80080d3 \([0, 0, 0, 113317, -4360918]\) \(78574018497804702/49482601743575\) \(-101340368370841600\) \([2]\) \(589824\) \(1.9521\)