Properties

Label 7938d
Number of curves $2$
Conductor $7938$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7938d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7938d do not have complex multiplication.

Modular form 7938.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} + 4 q^{13} + q^{16} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 7938d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7938.h2 7938d1 \([1, -1, 0, -72, -218]\) \(10481625/2\) \(7938\) \([]\) \(864\) \(-0.25084\) \(\Gamma_0(N)\)-optimal
7938.h1 7938d2 \([1, -1, 0, -177, 629]\) \(23625/8\) \(208324872\) \([]\) \(2592\) \(0.29846\)