Properties

Label 78144.ct
Number of curves $4$
Conductor $78144$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ct1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 78144.ct have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 78144.ct do not have complex multiplication.

Modular form 78144.2.a.ct

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} + q^{9} + q^{11} + 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 78144.ct

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78144.ct1 78144cy4 \([0, 1, 0, -69158273, 221344684671]\) \(139545621883503188502625/220644468\) \(57840623419392\) \([2]\) \(3981312\) \(2.7975\)  
78144.ct2 78144cy3 \([0, 1, 0, -4322433, 3457360767]\) \(34069730739753390625/1354703543952\) \(355127405825753088\) \([2]\) \(1990656\) \(2.4509\)  
78144.ct3 78144cy2 \([0, 1, 0, -856193, 301590399]\) \(264788619837198625/3058196150592\) \(801687771700789248\) \([2]\) \(1327104\) \(2.2482\)  
78144.ct4 78144cy1 \([0, 1, 0, -98433, -4393089]\) \(402355893390625/201513996288\) \(52825685042921472\) \([2]\) \(663552\) \(1.9016\) \(\Gamma_0(N)\)-optimal