Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3+354964\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3+354964z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+22717712\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(86, 995)$ | $4.9905794213414816836634871479$ | $\infty$ |
Integral points
\( \left(86, 995\right) \), \( \left(86, -996\right) \)
Invariants
| Conductor: | $N$ | = | \( 7803 \) | = | $3^{3} \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-54431835312123$ | = | $-1 \cdot 3^{3} \cdot 17^{10} $ |
|
| j-invariant: | $j$ | = | \( 0 \) | = | $0$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3145467637858362414002209616$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691959$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.360805729483161$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.9905794213414816836634871479$ |
|
| Real period: | $\Omega$ | ≈ | $0.49991354708552265053279526158$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.4948582605348351865232929512 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.494858261 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.499914 \cdot 4.990579 \cdot 1}{1^2} \\ & \approx 2.494858261\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 22032 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $II$ | additive | 1 | 3 | 3 | 0 |
| $17$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | additive | $2$ | \( 289 = 17^{2} \) |
| $17$ | additive | $50$ | \( 27 = 3^{3} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 7803c
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 7803r1, its twist by $17$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.31212.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.2922566832.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.38336139.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.16561212048.3 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | 12.0.1469659553427321.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/7\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.7275895340854021754748150999897.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.122642252329786309084149903273984.7 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | add | ss | ord | ss | ord | add | ord | ss | ss | ord | ord | ss | ord | ss |
| $\lambda$-invariant(s) | 8,1 | - | 1,3 | 3 | 1,1 | 1 | - | 1 | 1,1 | 3,1 | 1 | 1 | 1,1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0,0 | - | 0,0 | 0 | 0,0 | 0 | - | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.