Properties

Label 7742m
Number of curves $2$
Conductor $7742$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7742m have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(7\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7742m do not have complex multiplication.

Modular form 7742.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} + q^{4} + 2 q^{5} - 2 q^{6} + q^{8} + q^{9} + 2 q^{10} - 4 q^{11} - 2 q^{12} - 2 q^{13} - 4 q^{15} + q^{16} + 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 7742m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7742.i2 7742m1 \([1, 0, 0, 48, -260]\) \(103823/316\) \(-37177084\) \([2]\) \(2304\) \(0.13592\) \(\Gamma_0(N)\)-optimal
7742.i1 7742m2 \([1, 0, 0, -442, -3102]\) \(81182737/12482\) \(1468494818\) \([2]\) \(4608\) \(0.48249\)