Properties

Label 76608ft
Number of curves $2$
Conductor $76608$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ft1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76608ft have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76608ft do not have complex multiplication.

Modular form 76608.2.a.ft

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{7} - 2 q^{11} + 6 q^{13} + 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 76608ft

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76608.bo1 76608ft1 \([0, 0, 0, -203916, -28274416]\) \(4906933498657/1032471552\) \(197308386222538752\) \([2]\) \(737280\) \(2.0334\) \(\Gamma_0(N)\)-optimal
76608.bo2 76608ft2 \([0, 0, 0, 441204, -170974960]\) \(49702082429663/94844496096\) \(-18125065461165981696\) \([2]\) \(1474560\) \(2.3799\)