Properties

Label 76608.eg
Number of curves $4$
Conductor $76608$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76608.eg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76608.eg do not have complex multiplication.

Modular form 76608.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} - 2 q^{13} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 76608.eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76608.eg1 76608bt4 \([0, 0, 0, -3617004, -2647704400]\) \(27384399945278713/153257496\) \(29287963579908096\) \([2]\) \(1179648\) \(2.3519\)  
76608.eg2 76608bt2 \([0, 0, 0, -230124, -39806800]\) \(7052482298233/499254336\) \(95408989390503936\) \([2, 2]\) \(589824\) \(2.0053\)  
76608.eg3 76608bt1 \([0, 0, 0, -45804, 3029168]\) \(55611739513/11440128\) \(2186242506620928\) \([2]\) \(294912\) \(1.6588\) \(\Gamma_0(N)\)-optimal
76608.eg4 76608bt3 \([0, 0, 0, 207636, -173411152]\) \(5180411077127/70976229912\) \(-13563768761443418112\) \([2]\) \(1179648\) \(2.3519\)