Properties

Label 76230.v
Number of curves $4$
Conductor $76230$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76230.v have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76230.v do not have complex multiplication.

Modular form 76230.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} - 2 q^{13} - q^{14} + q^{16} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 76230.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76230.v1 76230bh4 \([1, -1, 0, -3557402745, -81666310938679]\) \(3855131356812007128171561/8967612500\) \(11581384302154012500\) \([2]\) \(39321600\) \(3.7883\)  
76230.v2 76230bh3 \([1, -1, 0, -234079665, -1133726240575]\) \(1098325674097093229481/205612182617187500\) \(265541547886276245117187500\) \([2]\) \(39321600\) \(3.7883\)  
76230.v3 76230bh2 \([1, -1, 0, -222340245, -1275963401179]\) \(941226862950447171561/45393906250000\) \(58624775909663906250000\) \([2, 2]\) \(19660800\) \(3.4417\)  
76230.v4 76230bh1 \([1, -1, 0, -13165125, -22125896875]\) \(-195395722614328041/50730248800000\) \(-65516491384600687200000\) \([2]\) \(9830400\) \(3.0951\) \(\Gamma_0(N)\)-optimal