Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-8087442x+9714812966\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-8087442xz^2+9714812966z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-129399075x+621618630750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 76050 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-6899873522054763656250$ | = | $-1 \cdot 2 \cdot 3^{6} \cdot 5^{6} \cdot 13^{13} $ |
|
j-invariant: | $j$ | = | \( -\frac{1064019559329}{125497034} \) | = | $-1 \cdot 2^{-1} \cdot 3^{3} \cdot 13^{-7} \cdot 41^{3} \cdot 83^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9262943053852579662207530759$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28979452610338456519600707004$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0626891964834324$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.2954702261269$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.12919121897983717054386295010$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.25838243795967434108772590020 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.258382438 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.129191 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 0.258382438\end{aligned}$$
Modular invariants
Modular form 76050.2.a.bx
For more coefficients, see the Downloads section to the right.
Modular degree: | 4609920 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$13$ | $2$ | $I_{7}^{*}$ | additive | 1 | 2 | 13 | 7 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.6.3 | 7.24.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 8191 & 1470 \\ 3465 & 10291 \end{array}\right),\left(\begin{array}{rr} 10907 & 14 \\ 10906 & 15 \end{array}\right),\left(\begin{array}{rr} 5281 & 7080 \\ 3990 & 4201 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 5461 & 1470 \\ 6195 & 10291 \end{array}\right),\left(\begin{array}{rr} 6719 & 9450 \\ 2625 & 629 \end{array}\right),\left(\begin{array}{rr} 2183 & 0 \\ 0 & 10919 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$19477215313920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 38025 = 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
$3$ | additive | $6$ | \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \) |
$5$ | additive | $14$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 76050bd
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 26b2, its twist by $-195$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.104.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1124864.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.6.124621804125.1 | \(\Z/7\Z\) | not in database |
$8$ | 8.2.105562312830000.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$14$ | 14.0.29783435212797767218710720000000.1 | \(\Z/7\Z\) | not in database |
$18$ | 18.6.507366775537052524124180857344000000000.1 | \(\Z/14\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | add | ord | ord | add | ord | ord | ord | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 2 | - | - | 4 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
$\mu$-invariant(s) | 0 | - | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.