Learn more

Refine search


Results (1-50 of 116 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
26.b1 26.b \( 2 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -213, -1257]$ \(y^2+xy+y=x^3-x^2-213x-1257\)
208.d1 208.d \( 2^{4} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3403, 83834]$ \(y^2=x^3-3403x+83834\)
234.b1 234.b \( 2 \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1914, 35846]$ \(y^2+xy=x^3-x^2-1914x+35846\)
338.a1 338.a \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.383448027$ $[1, -1, 0, -35944, -2868878]$ \(y^2+xy=x^3-x^2-35944x-2868878\)
650.g1 650.g \( 2 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5317, -162409]$ \(y^2+xy=x^3-x^2-5317x-162409\)
832.a1 832.a \( 2^{6} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.089317794$ $[0, 0, 0, -13612, 670672]$ \(y^2=x^3-13612x+670672\)
832.j1 832.j \( 2^{6} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -13612, -670672]$ \(y^2=x^3-13612x-670672\)
1274.o1 1274.o \( 2 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -10422, 451903]$ \(y^2+xy+y=x^3-x^2-10422x+451903\)
1872.m1 1872.m \( 2^{4} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $4.209246558$ $[0, 0, 0, -30627, -2263518]$ \(y^2=x^3-30627x-2263518\)
2704.n1 2704.n \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -575107, 184183298]$ \(y^2=x^3-575107x+184183298\)
3042.l1 3042.l \( 2 \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.903989467$ $[1, -1, 1, -323498, 77783203]$ \(y^2+xy+y=x^3-x^2-323498x+77783203\)
3146.a1 3146.a \( 2 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.170407109$ $[1, -1, 0, -25735, 1749919]$ \(y^2+xy=x^3-x^2-25735x+1749919\)
5200.c1 5200.c \( 2^{4} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.218167575$ $[0, 0, 0, -85075, 10479250]$ \(y^2=x^3-85075x+10479250\)
5850.bn1 5850.bn \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -47855, 4432897]$ \(y^2+xy+y=x^3-x^2-47855x+4432897\)
7488.v1 7488.v \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -122508, -18108144]$ \(y^2=x^3-122508x-18108144\)
7488.w1 7488.w \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.387935155$ $[0, 0, 0, -122508, 18108144]$ \(y^2=x^3-122508x+18108144\)
7514.i1 7514.i \( 2 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -61467, -6420203]$ \(y^2+xy+y=x^3-x^2-61467x-6420203\)
8450.y1 8450.y \( 2 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -898605, -359508353]$ \(y^2+xy+y=x^3-x^2-898605x-359508353\)
9386.f1 9386.f \( 2 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.917483722$ $[1, -1, 0, -76780, 9003842]$ \(y^2+xy=x^3-x^2-76780x+9003842\)
10192.a1 10192.a \( 2^{4} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -166747, -28755062]$ \(y^2=x^3-166747x-28755062\)
10816.c1 10816.c \( 2^{6} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2300428, 1473466384]$ \(y^2=x^3-2300428x+1473466384\)
10816.bm1 10816.bm \( 2^{6} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $14.35077864$ $[0, 0, 0, -2300428, -1473466384]$ \(y^2=x^3-2300428x-1473466384\)
11466.n1 11466.n \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -93795, -12107593]$ \(y^2+xy=x^3-x^2-93795x-12107593\)
13754.f1 13754.f \( 2 \cdot 13 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $6.036866914$ $[1, -1, 1, -112512, 15965757]$ \(y^2+xy+y=x^3-x^2-112512x+15965757\)
16562.y1 16562.y \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1761265, 987547679]$ \(y^2+xy=x^3-x^2-1761265x+987547679\)
20800.a1 20800.a \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $7.165071991$ $[0, 0, 0, -340300, -83834000]$ \(y^2=x^3-340300x-83834000\)
20800.ef1 20800.ef \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -340300, 83834000]$ \(y^2=x^3-340300x+83834000\)
21866.e1 21866.e \( 2 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $29.18461737$ $[1, -1, 0, -178870, -31902586]$ \(y^2+xy=x^3-x^2-178870x-31902586\)
24336.w1 24336.w \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $13.84114488$ $[0, 0, 0, -5175963, -4972949046]$ \(y^2=x^3-5175963x-4972949046\)
24986.i1 24986.i \( 2 \cdot 13 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -204393, 39074515]$ \(y^2+xy+y=x^3-x^2-204393x+39074515\)
25168.bm1 25168.bm \( 2^{4} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -411763, -111583054]$ \(y^2=x^3-411763x-111583054\)
28314.bx1 28314.bx \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.733925055$ $[1, -1, 1, -231617, -47016197]$ \(y^2+xy+y=x^3-x^2-231617x-47016197\)
31850.a1 31850.a \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -260542, 56227366]$ \(y^2+xy=x^3-x^2-260542x+56227366\)
35594.a1 35594.a \( 2 \cdot 13 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -291169, -66277889]$ \(y^2+xy=x^3-x^2-291169x-66277889\)
40768.d1 40768.d \( 2^{6} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -666988, 230040496]$ \(y^2=x^3-666988x+230040496\)
40768.ec1 40768.ec \( 2^{6} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $29.09374615$ $[0, 0, 0, -666988, -230040496]$ \(y^2=x^3-666988x-230040496\)
40898.bd1 40898.bd \( 2 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $10.29358546$ $[1, -1, 1, -4349247, 3831524337]$ \(y^2+xy+y=x^3-x^2-4349247x+3831524337\)
43706.x1 43706.x \( 2 \cdot 13 \cdot 41^{2} \) $1$ $\mathsf{trivial}$ $11.23713050$ $[1, -1, 1, -357528, -90190667]$ \(y^2+xy+y=x^3-x^2-357528x-90190667\)
46800.dp1 46800.dp \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -765675, -282939750]$ \(y^2=x^3-765675x-282939750\)
48074.c1 48074.c \( 2 \cdot 13 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -393259, 104245031]$ \(y^2+xy=x^3-x^2-393259x+104245031\)
57434.e1 57434.e \( 2 \cdot 13 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -469827, 136115853]$ \(y^2+xy+y=x^3-x^2-469827x+136115853\)
60112.a1 60112.a \( 2^{4} \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -983467, 411876442]$ \(y^2=x^3-983467x+411876442\)
67600.d1 67600.d \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -14377675, 23022912250]$ \(y^2=x^3-14377675x+23022912250\)
67626.f1 67626.f \( 2 \cdot 3^{2} \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -553200, 173898674]$ \(y^2+xy=x^3-x^2-553200x+173898674\)
73034.h1 73034.h \( 2 \cdot 13 \cdot 53^{2} \) $1$ $\mathsf{trivial}$ $54.68138223$ $[1, -1, 0, -597439, -194865553]$ \(y^2+xy=x^3-x^2-597439x-194865553\)
75088.b1 75088.b \( 2^{4} \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.621369155$ $[0, 0, 0, -1228483, -575017406]$ \(y^2=x^3-1228483x-575017406\)
76050.bx1 76050.bx \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -8087442, 9714812966]$ \(y^2+xy=x^3-x^2-8087442x+9714812966\)
78650.dj1 78650.dj \( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $39.18212830$ $[1, -1, 1, -643380, 218096497]$ \(y^2+xy+y=x^3-x^2-643380x+218096497\)
84474.by1 84474.by \( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $11.23971338$ $[1, -1, 1, -691022, -242412713]$ \(y^2+xy+y=x^3-x^2-691022x-242412713\)
90506.a1 90506.a \( 2 \cdot 13 \cdot 59^{2} \) $1$ $\mathsf{trivial}$ $0.808633577$ $[1, -1, 0, -740365, 269212327]$ \(y^2+xy=x^3-x^2-740365x+269212327\)
Next   Download to