Properties

Label 7488.bs
Number of curves $4$
Conductor $7488$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7488.bs have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7488.bs do not have complex multiplication.

Modular form 7488.2.a.bs

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7488.bs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7488.bs1 7488n3 \([0, 0, 0, -29964, 1996400]\) \(62275269892/39\) \(1863254016\) \([2]\) \(8192\) \(1.0990\)  
7488.bs2 7488n2 \([0, 0, 0, -1884, 30800]\) \(61918288/1521\) \(18166726656\) \([2, 2]\) \(4096\) \(0.75243\)  
7488.bs3 7488n1 \([0, 0, 0, -264, -952]\) \(2725888/1053\) \(786060288\) \([2]\) \(2048\) \(0.40586\) \(\Gamma_0(N)\)-optimal
7488.bs4 7488n4 \([0, 0, 0, 276, 97328]\) \(48668/85683\) \(-4093569073152\) \([2]\) \(8192\) \(1.0990\)