Properties

Label 74360.m
Number of curves $1$
Conductor $74360$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 74360.m1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 74360.m do not have complex multiplication.

Modular form 74360.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 5 q^{7} - 2 q^{9} + q^{11} + q^{15} - 3 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 74360.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
74360.m1 74360i1 \([0, 1, 0, -128429240, 560451823088]\) \(-23698747132646144258/14374305034375\) \(-142094387012949113600000\) \([]\) \(11827200\) \(3.3859\) \(\Gamma_0(N)\)-optimal