Properties

Label 7410.x
Number of curves $1$
Conductor $7410$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7410.x1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7410.x do not have complex multiplication.

Modular form 7410.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} + q^{8} + q^{9} + q^{10} + 5 q^{11} + q^{12} - q^{13} + 4 q^{14} + q^{15} + q^{16} + q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7410.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7410.x1 7410w1 \([1, 0, 0, -605, -6735]\) \(-24492589315921/5129379840\) \(-5129379840\) \([]\) \(9360\) \(0.58491\) \(\Gamma_0(N)\)-optimal