Show commands: SageMath
Rank
The elliptic curves in class 7392n have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 7392n do not have complex multiplication.Modular form 7392.2.a.n
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 7392n
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7392.k2 | 7392n1 | \([0, 1, 0, -24018, 31022280]\) | \(-23942656868248000/6485575209206247\) | \(-415076813389199808\) | \([2]\) | \(80640\) | \(2.0598\) | \(\Gamma_0(N)\)-optimal |
7392.k1 | 7392n2 | \([0, 1, 0, -1634528, 796336632]\) | \(943259332190261813000/10069472554261659\) | \(5155569947781969408\) | \([2]\) | \(161280\) | \(2.4064\) |