Properties

Label 7392n
Number of curves $2$
Conductor $7392$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7392n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7392n do not have complex multiplication.

Modular form 7392.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} + q^{11} - 2 q^{13} + 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 7392n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7392.k2 7392n1 \([0, 1, 0, -24018, 31022280]\) \(-23942656868248000/6485575209206247\) \(-415076813389199808\) \([2]\) \(80640\) \(2.0598\) \(\Gamma_0(N)\)-optimal
7392.k1 7392n2 \([0, 1, 0, -1634528, 796336632]\) \(943259332190261813000/10069472554261659\) \(5155569947781969408\) \([2]\) \(161280\) \(2.4064\)