Properties

Label 72963i
Number of curves $2$
Conductor $72963$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 72963i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1\)
\(67\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 72963i do not have complex multiplication.

Modular form 72963.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 3 q^{8} - 4 q^{13} - q^{16} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 72963i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
72963.p2 72963i1 \([1, -1, 0, -114912, -13056125]\) \(129938649625/17924577\) \(23149017053374113\) \([2]\) \(345600\) \(1.8667\) \(\Gamma_0(N)\)-optimal
72963.p1 72963i2 \([1, -1, 0, -479727, 114848014]\) \(9454162623625/1068251283\) \(1379612314837654227\) \([2]\) \(691200\) \(2.2133\)