Properties

Label 71632.g
Number of curves $2$
Conductor $71632$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 71632.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 71632.g do not have complex multiplication.

Modular form 71632.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 3 q^{9} - 4 q^{13} - 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 71632.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
71632.g1 71632j2 \([0, 0, 0, -8591, -279510]\) \(154617552/15059\) \(6829551897344\) \([2]\) \(92160\) \(1.1999\)  
71632.g2 71632j1 \([0, 0, 0, -1936, 27951]\) \(28311552/4477\) \(126900457552\) \([2]\) \(46080\) \(0.85328\) \(\Gamma_0(N)\)-optimal