Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+102900x+869162000\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+102900xz^2+869162000z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+102900x+869162000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1666, 75264)$ | $1.0093817081702864068229581506$ | $\infty$ |
| $(91826/25, 28173824/125)$ | $5.3585949509508845283347060996$ | $\infty$ |
Integral points
\((-196,\pm 29008)\), \((256,\pm 30204)\), \((1666,\pm 75264)\), \((17101,\pm 2236899)\)
Invariants
| Conductor: | $N$ | = | \( 705600 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-326420926562304000000$ | = | $-1 \cdot 2^{27} \cdot 3^{3} \cdot 5^{6} \cdot 7^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{189}{512} \) | = | $2^{-9} \cdot 3^{3} \cdot 7$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6151740237487191008986084559$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.80119220817881867677999919776$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.3265882735428125$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.061039767874545$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.3906634960925307903362700806$ |
|
| Real period: | $\Omega$ | ≈ | $0.13458914250516732684365101382$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2^{2}\cdot2\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $17.412594659352027357951706397 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 17.412594659 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.134589 \cdot 5.390663 \cdot 24}{1^2} \\ & \approx 17.412594659\end{aligned}$$
Modular invariants
Modular form 705600.2.a.lc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 20901888 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{17}^{*}$ | additive | -1 | 6 | 27 | 9 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \), index $144$, genus $2$, and generators
$\left(\begin{array}{rr} 1259 & 990 \\ 1755 & 1349 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 12 & 217 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 2503 & 18 \\ 2502 & 19 \end{array}\right),\left(\begin{array}{rr} 709 & 990 \\ 2250 & 769 \end{array}\right),\left(\begin{array}{rr} 1889 & 990 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 1391 & 270 \\ 675 & 2461 \end{array}\right),\left(\begin{array}{rr} 13 & 12 \\ 2456 & 2461 \end{array}\right)$.
The torsion field $K:=\Q(E[2520])$ is a degree-$40131624960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $6$ | \( 78400 = 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $14$ | \( 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
| $7$ | additive | $26$ | \( 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 705600.lc
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 882.e2, its twist by $-840$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.