Properties

Label 70560.f
Number of curves $4$
Conductor $70560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 70560.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 70560.f do not have complex multiplication.

Modular form 70560.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{11} - 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 70560.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
70560.f1 70560dl4 \([0, 0, 0, -28919163, 59855855038]\) \(60910917333827912/3255076125\) \(142937729434092096000\) \([2]\) \(3538944\) \(2.9348\)  
70560.f2 70560dl3 \([0, 0, 0, -9349788, -10259947712]\) \(257307998572864/19456203375\) \(6834925948358075904000\) \([2]\) \(3538944\) \(2.9348\)  
70560.f3 70560dl1 \([0, 0, 0, -1907913, 825469288]\) \(139927692143296/27348890625\) \(150118928803809000000\) \([2, 2]\) \(1769472\) \(2.5882\) \(\Gamma_0(N)\)-optimal
70560.f4 70560dl2 \([0, 0, 0, 3926517, 4885065682]\) \(152461584507448/322998046875\) \(-14183572260375000000000\) \([2]\) \(3538944\) \(2.9348\)