Properties

Label 70070.bq
Number of curves $4$
Conductor $70070$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 70070.bq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 70070.bq do not have complex multiplication.

Modular form 70070.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{8} - 3 q^{9} - q^{10} - q^{11} - q^{13} + q^{16} - 2 q^{17} - 3 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 70070.bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
70070.bq1 70070bd4 \([1, -1, 1, -723496108, -7490174313009]\) \(355995140004443961140387841/2768480\) \(325708903520\) \([2]\) \(10321920\) \(3.2312\)  
70070.bq2 70070bd3 \([1, -1, 1, -45320428, -116471371313]\) \(87501897507774086005761/815991377947460000\) \(96000569624140721540000\) \([2]\) \(10321920\) \(3.2312\)  
70070.bq3 70070bd2 \([1, -1, 1, -45218508, -117025489969]\) \(86912881496074271306241/7664481510400\) \(901718585217049600\) \([2, 2]\) \(5160960\) \(2.8846\)  
70070.bq4 70070bd1 \([1, -1, 1, -2819788, -1836647473]\) \(-21075830718885163521/199306463150080\) \(-23448206083143761920\) \([2]\) \(2580480\) \(2.5380\) \(\Gamma_0(N)\)-optimal