Properties

Label 69696.fg
Number of curves $4$
Conductor $69696$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 69696.fg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 69696.fg do not have complex multiplication.

Modular form 69696.2.a.fg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - 4 q^{7} - 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 69696.fg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69696.fg1 69696cn4 \([0, 0, 0, -1366182444, 19436191250960]\) \(6663712298552914184/29403\) \(1244300335268069376\) \([2]\) \(14745600\) \(3.5586\)  
69696.fg2 69696cn2 \([0, 0, 0, -85387764, 303680321120]\) \(13015685560572352/864536409\) \(4573270344735880482816\) \([2, 2]\) \(7372800\) \(3.2120\)  
69696.fg3 69696cn3 \([0, 0, 0, -80117004, 342804118448]\) \(-1343891598641864/421900912521\) \(-17854349790830347545772032\) \([2]\) \(14745600\) \(3.5586\)  
69696.fg4 69696cn1 \([0, 0, 0, -5667519, 4123528508]\) \(243578556889408/52089208083\) \(4305378801265305179328\) \([2]\) \(3686400\) \(2.8655\) \(\Gamma_0(N)\)-optimal