Properties

Label 68970.j
Number of curves $4$
Conductor $68970$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 68970.j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 68970.j do not have complex multiplication.

Modular form 68970.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{10} - q^{12} + 6 q^{13} + 4 q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 68970.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68970.j1 68970o4 \([1, 1, 0, -59590082, -177080195376]\) \(13209596798923694545921/92340\) \(163585942740\) \([2]\) \(5529600\) \(2.6864\)  
68970.j2 68970o3 \([1, 1, 0, -3770362, -2696245064]\) \(3345930611358906241/165622259047500\) \(293409934860448147500\) \([2]\) \(5529600\) \(2.6864\)  
68970.j3 68970o2 \([1, 1, 0, -3724382, -2768038236]\) \(3225005357698077121/8526675600\) \(15105525952611600\) \([2, 2]\) \(2764800\) \(2.3399\)  
68970.j4 68970o1 \([1, 1, 0, -229902, -44440524]\) \(-758575480593601/40535043840\) \(-71810302800234240\) \([2]\) \(1382400\) \(1.9933\) \(\Gamma_0(N)\)-optimal