Properties

Label 68544be
Number of curves $4$
Conductor $68544$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 68544be have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 68544be do not have complex multiplication.

Modular form 68544.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{7} - 2 q^{13} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 68544be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68544.x4 68544be1 \([0, 0, 0, -25439196, -49844774320]\) \(-152435594466395827792/1646846627220711\) \(-19669830717340030058496\) \([2]\) \(4423680\) \(3.0937\) \(\Gamma_0(N)\)-optimal
68544.x3 68544be2 \([0, 0, 0, -408076716, -3172932212560]\) \(157304700372188331121828/18069292138401\) \(863273875465458745344\) \([2, 2]\) \(8847360\) \(3.4403\)  
68544.x2 68544be3 \([0, 0, 0, -409126476, -3155787112336]\) \(79260902459030376659234/842751810121431609\) \(80526189471796250930184192\) \([2]\) \(17694720\) \(3.7869\)  
68544.x1 68544be4 \([0, 0, 0, -6529227276, -203067673360144]\) \(322159999717985454060440834/4250799\) \(406170169638912\) \([2]\) \(17694720\) \(3.7869\)